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1 Introduction

Shape optimization is a part of the field of optimal control theory. The main objective in shape
optimization problems is to deform the outer boundary of an object in order to minimize or
maximize a cost function, while satisfying given constraints. Historically, the shape optimiza-
tion methods have been used in cutting edge technologies mainly in advanced areas such as
aerodynamics. They have recently been extended to other engineering areas where the shape
greatly influences the performances, for example, in hydrodynamics, elasticity, geophysics or
mechanical models (Allaire, 2003; Boulkhemair et al., 2013; Henrot & Pierre, 2006; Pironneau,
1984). Indeed, the shape optimization is now commonly used for solving problems that are re-
lated to a variety of phenomena in different scientist sectors, in order to improve the productivity,
reduce the cost and maximize the profit.

In many cases, the shape optimization problem is reduced to find an optimal shape by
minimizing a certain cost functional, subject to given constraints, which often depends on the
solution of a given partial differential equation defined on the variable domain. Generally, we
try to solve and analyze problems of the following kind: find a solution 2* of

Q'eO, JEO)=int J(Q),
QeOo
where O is a class of subsets in R™ and J is a functional defined on O with values in R. The
elements of O are called admissible shapes or domains and J is called a shape or cost functional.
At the beginning of any optimization process, there is a modeling question. One has to choose
a mathematical model to represent the data to be optimized. There are two main ingredients in a
mathematical model for shape optimization : at first the way to represent a shape, and secondly
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the way to perform a sensitivity analysis. In this work we are interested in a new method in
sensitivity analysis. Indeed, the numerical investigation of shape optimization problems is based
on the study of the first variation of the cost functional, and in particular on the computation
of its gradient or what one call in the literature the shape derivative. This notion was first
introduced by Hadamard in his famous memory (Hadamard, 1907). We recall the two usual
frameworks for computing shape derivatives with the Hadamard method of variation of domains
using vector fields : the displacement field method and the speed method. A shape is considered
as a bounded open set of R", so if # € W (R",R") a variation of the reference shape € is
defined by
Qg = (Idgn + 0)(Q2) ={z+6(z) | z € Q}.

Then differentiating with respect to 6 defines the shape derivative with respect to the displace-

ment field method (Allaire, 2003; Céa, 1964; Murat & Simon, 1974, 1976). For the speed method

if V € CH(R x R™; R™) is a vector field, we can consider the solution to the following equation
d®y (t, l‘)

Qv (0,2) =2 and — = V(t, @y (t,x)), z € (1)

This defines a time-dependent domain
QO = (I)v(t, Q) = {‘pv(t,{ﬂ) ’ U Q}

Then differentiating with respect to the time parameter leads to another notion of shape deriva-
tive (Henrot & Pierre, 2006; Delfour & Zolésio, 2011; Sokolowski & Zolesio, 1992).

But these techniques themselves present some difficulties from both theoretical and numer-
ical point of view. For example, when one wants to connect the set of admissible domains
with vector fields, one has to suppose high smoothness conditions on the initial data in order
to differentiate functions depending on the domain. The main objective in this paper is to
develop a new method for the shape differentiability (Niftiyev & Gasimov, 2004; Boulkhemair,
2003; Boulkhemair & Chakib, 2014, 2015; Boulkhemair et al., 2020) for a shape optimization
problem of a volume cost functional subject to a boundary value problem. Then we establish
the expression for its shape derivative via support functions, using the formula of shape deriva-
tive with respect to star-shaped domains proposed in (Boulkhemair et al., 2020). This formula
was in fact introduced the first time by A. A. Niftiyev and Y. Gasimov (Niftiyev & Gasimov,
2004) for convex domains and studied and developed by A. Boulkhemair, A. Chakib and A.
Sadik (Boulkhemair, 2003; Boulkhemair & Chakib, 2014, 2015; Boulkhemair et al., 2020). In
order to be more precise, let €y be a bounded star-shaped domains of class C?,  be a bounded
convex domain of class C? and a family of functions (fe)e C L}, .(R™) with f, in the Sobolev
space I/Vllo’c1 (R™) and let f be a function such that

f € f 0

£ 2 fin L, (R™) as e — 0T,
€

1
hm(/ fed:v—/ fodas>
e—0t € Qp4-eQ Qo

f@)dz + [ fo(z) Pa(w(z)) do(), (2)
Qo Qo

Then,

exists and is equal to

where 1(x) denotes the outward unit normal vector to 99 at x, and P is the support function
of the convex domain {2.

As said above, our interest in a such formula came first from a numerical study undertaken
in (Boulkhemair et al., 2021, 2020). In fact, we believe that the use of support functions is
more advantageous than that using vectors fields. We refer, for example, to (Allaire, 2003), for
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explanations about the difficulties that arise when implementing numerically the minimization
of domain integral functionals, via gradient method type’s, using the usual expression of the
shape derivative by vector fields. In fact, when using vector fields, we have to extend the vector
field (obtained only on the boundary) to all the domain or to re-mesh at each iteration of the
process, and both approaches are expensive. While for this proposed approach involving support
functions, we get not only a set of boundary points but also a support function, at each iteration.
Then by taking its subdifferential at the origin, we get the next domain.

The outline of the paper is as follows. In the second section, we present the considered
shape optimization problem. In the third section, we give some preliminary results on the shape
derivative formulas using Minkowski deformation for a volume cost functional. In the fourth
section, we give the main result of this work which is the computation of the shape derivative of
the cost functional on the considered family of admissible domains and establish the expression
for its shape derivative by means of support functions. In the last section, we describe in more
details the main ingredients of the proposed process of optimization and we propose an algorithm
for the approximation of the problem, based on a gradient method.

2 Statement of the shape optimization problem

We are concerned with the following typical shape optimization problem :

i Q
min J (€2, ug) (3)
where
J(Q,uq) ::/j(m,uQ,VUQ)dx (4)
Q
and uq satisfies
AUQ = f in Q, (5)
Apug = g on T =0Q, (6)

where f and g are given functions, A and A are given operators, i denotes the set of admissible
domains and j is a function that do not depend on the shape 2.

In the sequel, we will propose a numerical method for the approximation of this problem
based on a gradient method. This requires to study the first variation or differentiability of
the cost functional with respect to an appropriate family of domains ¢. For this, we will use
the shape derivative formula proposed in (Boulkhemair et al., 2020). So let us define the set
of admissible domains. Let D be a fixed smooth and bounded open subset of R". The set
of admissible domains U is the set of bounded open subset of R™ which are of class C? and
star-shaped with respect to some ball of radius r > 0.

In this work, we will only consider the following types of functionals. The first one is:

Qe — / lug — <p0|2dx, (7)
Q

while the second one involves the gradient operator:

Qeldv— / |Vug — Vi ||2da. (8)
Q
In fact, it is equivalent to study the functional
F(@ua) = [ jlua. Vua)do ©)
with j(ug, Vug) = alug — ¢of* + B[ Vua — Ve %, (10)
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where o and f are fixed real numbers. Here, || - || denotes the euclidian norm in R™ and ugq is
the solution of the state equation associated to the operators A = —A and Ay = 1. The given
functions f, g, ¢o and ¢ satisfy appropriate regularity assumptions allowing the existence of
the shape derivative of J with respect to €.

3 Shape sensitivity analysis using Minkowski deformation

In order to compute the shape derivative of the cost functional for the shape optimization prob-
lem (3), we recall first the result on the shape derivative formulas given in (Boulkhemair, 2003;
Boulkhemair & Chakib, 2014; Boulkhemair et al., 2020) for the class of star-shaped domains U.

3.1 Preliminary results

Consider a real-valued shape function
J:QelU— J(2) eR

defined on a family U of subsets of R™.
Let O be the set of convex domains of class C? and K denote the set of all convex domains.
Since we are interested in the derivative with respect to the shape, let us first define the
technique adopted for the deformation of domains based on Minkowski sum and then define the
associated shape derivative.

Definition 1. Let Q € U and © € O. The deformed domain denoted by Q. is given by the sum
of Minkowski as follows :

Qe=0+e0:={x+ey|2€Q, ye O}, ec|0,1].

A shape functional J is called shape differentiable at £ in the direction of ©, if the eulerian
derivative 70 79
5J(Q)[O] := lim J(8) = JY
e—0t €
exists for all © € O. Then the expression 0.J(Q)[O] is called the shape derivative of J at  in
the direction of ©.

, e =0+ €0

To our knowledge, this kind of deformation was first used in the field of shape optimization
by A. A. Niftiyev and Y. Gasimov (Niftiyev & Gasimov, 2004). More precisely, they proposed
the deformation

(1-e)24+€0, for Q2,0 €O andec|0,1],

to express the shape derivative of a volume cost functional, under appropriate regularity as-
sumptions, by means of support functions of convex domains. Then, inspired by the Brunn-
Minkowski theory (see, for example, R. Schneider,(Schneider, 2014)), A. Boulkhemair and A.
Chakib (Boulkhemair, 2003; Boulkhemair & Chakib, 2014) proposed to compute the shape
derivative by considering the Minkowski deformation

Q+e0, forQeld,®€c O andecl0l].

In the sequel, we will opt for the last technique of deformation.
In this context, let us recall the shape derivative formula for a volume integral shape func-
tional J of type

QGUHJ(Q):/g(az)dm,
Q

where g is in the Sobolev space Wh1(D).

76



A. BOULKHEMALIR et al.: GEOMETRICAL VARIATIONS OF A STATE-CONSTRAINED FUNCTIONAL...

Recall first that the support function Pg of a bounded convex domain © is given by a
continuous, convex and positively homogeneous function:

Po(z) = sup(z,y) = sup(z.y), z € R",
y€O yeO

where (., .) denotes the standard scalar product of x and y in R™. Conversely, for any continuous,
convex, positively homogeneous function P(z) there exists a unique convex bounded set 2, such
that P(x) is its support function, i.e. P(z) = Po(x), where ) is obtained as a sub-differential
of the function P at the origin :

0= 0P(0) = {€ €R" | (£,9) < P(y), Wy € R"}.
Now, according to (Boulkhemair et al., 2020), we have

Theorem 1. Consider the set U of domains which are star-shaped with respect to some ball and
are contained in D. Let Q € U and © € O. Then, the shape derivative of J at @ € U in the
direction © exists and is given by

i 70 = J(©)

e—0t €

- / 9(2) Po(v())do (z),
o0

where Q. = Q + €O and v denotes the exterior unit normal vector to Q.

In the situation where the function g depends on domains, one can show the following more
general result.

Proposition 1. Let (ge)ecjo,1] C LY(D) be a family of functions and let go € WH1(D) and g be
a function such that

1
g = lim =(g. — go) in L' (D).

e—0t €

Consider the function

¢ €0, 1 I(e) = /Q g(2)dz € R,
Then we have s 1o
i X [ @)ool Polv(e))do(a). (11)

e—0+ €

where v denotes the outward unit normal vector to I' = 0f).

Proof. We can write

[(6);](0) _ % </Ege(x)dx_/ego(x)dx) +% (/ego(x)dx—/ﬂo go(az)dg:>

- [ o (Fa= e = 1) ) do+ [ ootz + ([ goeiie [ miapis)

First, we have
[ e (Hoe— @) - g o] < [ o - o) - ot

On the other hand, since we have that xn. = Xxa+co and that the characteristic functions
Xq. converge almost everywhere to the characteristic function xgq, then from the Lebesgue
convergence theorem in L'(D) and by the use of Theorem 1, it follows that

de —— 0.
e—0t

lim I(e) — I(0)

e—0t €

_ / xog(@)de + / 90(x) Po (v(z))do (z).
D r
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Consequently, we get

lim 2910 _ /Q o(x)d + / 90(2) Po(v(x))do ()

e—0t €

O]

The following result concerns the situation where g is written as a product of two functions
depending on the domains.

Proposition 2. Let (fe)ecpo,1] and (ke)eejo1) be two families of functions in L?(D) and let
fo € HY(D), kg € H*(D) and f, k be functions such that

f= lim 1(];—fo) in L*(D) and k= lim }(kg—k:o) in L*(D).

e—0t € e—0t €
Consider the function
€]0,1[— F(e) = [ fe(x)ke(x)dz € R.
Qe
Then, we have

lim F(e) — F(0)

e—0t €

- / (kfo + Fro)(x)de + / (foko) (z) Po (i(x))do (z). (12)
Q

r

where v denotes the exterior unit normal vector to €.

Proof. We can write

1 1 1

- (feke — foko) — fok — fko = f (ke — ko) + ke <€(fe — fo) — f) + fo <€(ke — ko) — k) :
Using Cauchy-Schwarz inequality, we get

Hl (foke — foko) — fok — fho _y
€ 1

) <[ fllz2(py ke = Foll L2(py + Ikell L2(py
D

L2(D)

ke_kO_k

+ I foll2(p)

12(D)

It follows from the assumptions that ||ke — kol z2(p) converge to 0 as e — 0. Therefore, there
exists M > 0 such that |[kc|[2(p) < M for small enough €. Consequently,

lim (fek — foko) — fok — fko = 0.
e—0t Ll(D)
So, applying Proposition 1 to the functional
€ €]0,1[— F(e / fe(x)ke(x)dz € R,
yields
. F(e) - F(0
i SO [ o+ pro@ide+ [ k@ P e)dotz). (1)
e—0+ € Q r
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4 Shape derivative under a state constraint problem

In this section, we prove and state the main result of this paper. Recall that we are interested
in computing the shape derivative of the shape cost functional

J(Q,uq) :a/ |uQ—goo\2dx+5/ ]\VUQ—leHQd:E, Qel, (14)
Q Q

where o and (8 are fixed real numbers and the family U of admissible domains is the set of
domains which are star-shaped with respect to some ball and are contained in D and uq is the
solution of the following state problem on {2

(15)

—Aug = f in €,
ug =g on I'=090.

In the sequel, for simplicity, we assume that ¢ = 0 and the given functions f, ¢y and ¢
satisfy the following regularity assumptions

(H) feHN (D), po € Hjoo(R") and 1 € Hio(R").

Note that these regularity assumptions ensure the well posedness of the state problem and
allow at the same time the existence of the shape derivative.

Now, let Q € U, € € [0,1] and let © € O, that is,  is a convex domain of class C? contained
in D. We denote by Q2. = Q2 4+ €© the Minkowski deformation domain of 2 by ©. Let uq, be
the solution of the state problem on 2,

{—Aumzf in Q. (16)

ug, =0 on ['.=0..

According to (Boulkhemair et al., 2020), recall that, if © is a strongly convex domain, 2
can be considered as a deformation of the domain € by the vector field V(x) = a(z) such that

(a(z),vr(z)) = Po(vr(x)),

where v denotes the exterior unit normal vector to 2. In the sequel, we will need the following
result (see for example, (Henrot & Pierre, 2006; Delfour & Zolésio, 2011; Sokolowski & Zolesio,
1992))

Theorem 2. Assume that the assumptions (H) hold and that © is a strongly convexr domain.
Let u = ugq be the unique solution of (15) on Q. Then, for e € [0,1], the unique solution ue = ugq,
of (15) on Qe satisfies

U =u+euw +eU. where U. — 0 in Hl(D)

where u: and U designate respectively extensions on D of u. and u. Moreover, the functions
Jo = 2u/'(u — ¢o) and j; = 2(Vu/',Vu — Vi) satisfy

1. - . .
g[\ue—¢0\2—|u—<ﬁ0’2]—J6—>0 in L'(D), e—=0

and
1. _
E[HVUE—chl\F—HVU—V%HQ]—j{—>O in  LY(D), €— 0.

In particular, we get the existence of the shape derivative of J.
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4.1 Shape derivative of the cost functional

Let € € [0,1] and let ug and ugq, be respectively the solution of (15) and (16). Consider their
extensions ug and ug, on D that we denote, for simplicity, again by uq and ugq, .

Let’s denote by jo and j; the following functions:
jo: DxR — R ji: DxR" — R
(z,y) +— Jo(w,y) = ly—wo(z)]? (z.y) > qilz,y) =lly— Vei(@)|?

so that
J(Q,uq) = a/Qjo(x,uQ(a:))da:jLB/ﬂjl(:z,VuQ(x))dx.

Now, let us define AT (Q,uq) = J(Qe, uq,) — J (2, uq). We have

AT (Q,uq) = Oé/Q

jO(auQe)d‘r_{—ﬂ/ jl(,VUQE)dm_a[)]O(,UQ)de—B/le(,VUQ)dx
€ QE

Define then the functions Ji, J2, J3 and Jy by
Ji(e) = / ol 0, )z — /Q Jo(ua)dz,  Ja(e) = /Q Gol-r ) — ol ua))da
Qe

Jg(e):/Q jl(.,Vuge)d:c—/le(.,VuQs)dx, J4(e):/Q(jl(.,VuQE)—jl(.,VuQ))dx,

so that
AT (Q,uq) = a(Ji(e) + J2(€)) + B(Js(e) + Ju(e)).

Let us first compute the shape derivative of the functions J; and J3. Setting du = uq, — uq, we
have

jo(ue.) = jo(ua) = |ua, — pol* = ua — ¢ol®
= |6ul® + 2(uq — wo)du. (17)

We note that since f € H'(D) and the domains D,  and © are smooth enough, we have
ug € H2(Q) and ug, € H*(Q:). On the other hand, according to Theorem 2, there exists
u' € HY(D) such that

Yo —UQ 0. (18)

Now, we have

io(., uq. ) — jo(.,u 1 ou
‘ jU( Qe) - .70( Q) _ Q(UQ i SDO)U/ < EH(suH%Q(D) + 2/ (UQ N 900) < _ U,/> dx
L1(D) D €
1 ou 2
< Lloulap + 2lun — wolZap | 2 -
c L2(D) L2(D) || ¢ L20)
and, by using (18), we have
1 9 B . 9 ou , 2 B
fim 0ulp) =0 and i 2o — pulfp | | <o
Thus,
lim ]0(‘a uQe) _ ]0('7 UQ) - 2(UQ o SOO)U/ — 07
e—07T € L1(D)

80



A. BOULKHEMALIR et al.: GEOMETRICAL VARIATIONS OF A STATE-CONSTRAINED FUNCTIONAL...

that is, the function € — jo(.,uq,) € L'(D) is differentiable at 0F.
Setting ji = 2(uq — ¢o)u’ and applying Proposition 1 to the function Jj(¢), we obtain

d d d
—(J = —70(. d (. P, do — —j0(. d
Een@)| = [ o)) et [Gtue)Powids — [ Siotua)| e
= /j6d$+/j0(-7uQ)P®(V)dU—/jédx
Q r Q
= /jo(.,uQ)P@(V)da. (19)
r
On the other hand, by a similar argument, we have
ji1( Vug,) = ji(, Vug) = [Vua, = Veu|* = [Vug — Ve ®
= ||Véul|? + 2(Vuq — Vi, Véu) (20)
Setting Wo = V(un — o1) and M, = |21 V0) =06 Vu0) oGy gy , we
€ LY(D)

have

dzx

1 o
D €

1 ou
HIVull + 20l v (2 - o)

2

IN

r2(p).
and, by using once more (18), we have

2

V—(SU—VU’ =0.
€

1 ) B . 2
61_1>1fé1+g||V5uHL2(D)—0 and 61_1>1(I)1+2||\PQHL2(D) L2(D)

Hence, we get
lim M, =0,

e—0t

that is, the function € — j1(., Vugq,) € L*(D) is differentiable at 0.
Setting 71 = 2(V(uq — ¢1), Vu') and applying Proposition 1 to the function J5(€), we obtain

d d d
— = —71(. d jo (. P, do — —1(. d
E@) = [t e [ Gtua) oo~ [ S, Vue)| s
= /jidw—i—/jl(.,VUQ)P@(V)dO'—/jidx
Q r Q
= /jl(.,VUQ)P@(I/)dJ.
r
Therefore, we have obtained
d .
d—(Jl(e)) :/jo(.,UQ)P@(V)dO',
€ e=0"+ r
d .
d—(Jg(e)) :/]1(.,VUQ)P@(V)dU,
€ =0Tt r
and, of course,
(€ + 8a() = ca [ jolesua)Po(w)do +¢8 [ da(. Vuo)Po(w)do +ole). (21)
r r
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Thus, it remains to compute the shape derivative of Jy and Jy. Using the formulas (20)
and (17), we can write

ady(€) + BJi(e) = Jaa(e) + Err(e).

where
Joa(e) = a/ 2(uq — wo)dudx +5/ 2(Vuq — V1, Viu)dz
Q Q
and
Err(c) = a/ (Gulde + 5/ |V 6ul?de.
Q Q
First, by using the convergence in (18), we have

Err(e) = ao1(€e) + Boa(e) = o(e).

On the other hand, using Green’s formulas, we have

/ (Vug — Vi, Vouydx = / —A(ug — p1)dudz + Oy (ug — p1)dudo.
Q Q o0

Hence,
Joa(e) = a/ 2(ug — wo)oudr + 25/ —A(ug — ¢1)dudx 4+ 2 20, (ug — p1)dudo
Q Q o0

= /(QQ(UQ — o) — 2BA(uq — ¢1))dudx + 25/ 0y (uq — p1)dudo.
Q o0

Now, let us introduce the unique solution gy of the following problem, called adjoint state
problem,

(22)

—Atpg = 20(uq — o) — 2BA(uq —¢1)  in Q,
o =10 on I'=09Q.

Thus, by using Green’s formulas, we can write
Joa(e) = / —Aygdudx + 2B/ Oy (ug — p1)oudo
Q o0
= /<V¢0,V5u>dx —/ Ovodudo + 2,3/ Oy (uq — p1)dudo
Q onN oN

= / —Aduppdx +/ Oyoupgdo —/ Oy hodudo + 2 Oy (ug — p1)dudo.
Q 00 [2)9] [2)9]

Using the fact that for all € € [0,1[, 2 C Q. and ug, and uq are respectively solutions of
problems (16) and (15), we get that

—Adu =0in Q. (23)

On the other hand, we know that 1o € H}(£2). Hence,

Jaa(€) = — - Oy pdudo + 23 - 0y (uq — p1)dudo.

Let us set

[1]

1(e) = —/ Oy odudo and Ea(e) =20 0y (uq — p1)dudo.
o0 o0
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In order to deal with the computation of the shape derivatives of the functions =1 and =3, let
us introduce the solution . of the following problem:

{—Am = 2a(ug — o) — 26A(ug — 1) in Qe 1)

8Vw6 =0 on Fe = BQG
Thus, we have

/ A pdudo = 0.
9

Hence, E1(€) can be written

Hi(e) = — Oy hodudo +/ O, dudo.
o0 00

On the other hand, we know that wu. is the solution of (16), so we have

Oy (uq, — p1)ug.do = 0.
0N

Thus, =5 can be written

Ea(e) = 2,6’/ Oy (uq — p1)dudo — 2B/ Oy (uq, — ¢1)uq.do.
oN 00N
Let us calculate the derivative of =;. By using Green’s formulas, we have
51(6) = —/ Oy odudo +/ Oyheoudo
o0 0
= —/ Apgdudr — / (Vio, Vou)dx +/ A dudx +/ (Vipe, Vou)dz.
Q Q Qe Qe

Using the fact that Q C €, ¥ and 1q_ are respectively solutions of problems (22) and (24)
and the fact that —Aug = f in ), we obtain

Eile) = /Q(2a(UQ — o) — 2BA(uq — ¢1))dudr — /Q<V77[)0, Vou)dx

— / (2a(uq — vo) — 28A(ug — p1))oudx + / (Vi)e, Vou)dz
Qe Qe

= / (2a(uq — o) + 28(f + Ap1))dudx — / (Vipo, Vou)dx
Q Q
- / (2a(ug — o) + 268(f + Apq))dudx + / (Vipe, Véu)dx
Qe Qe
Hence, we can write Zj(e) = Y1(e) + To(€), where

Ti(e) = /Q(Qoz(UQ — o) +2B8(f + Ap1))dudz — /Q<V¢Jo, Vou)dx

and To(e) = —/Q (2a(UQ—goo)+2ﬁ(f+Acp1))5udx+/ﬂ (Vipe, Vou)dz.

Applying Proposition 2, the shape derivative of the function Yy is given by

d
—7T
de 1)

_ / (2a(un — wo) + 28(f + Agr))dz — / (Vo, V') dz.
Q Q

e=01
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Next, using (18) and Proposition 2, we get the shape derivative of the function Ts:

d

7c F2()

=— / (2a(uq — o) + 2B(f + Apr))u'dz + / (Vpo, Vu')dx
Q Q

d
Hence, the shape derivative of Zj(¢) is given by T —Z1(e) =0.
e=071

Let us now calculate the derivative of Z5. By using Green’s formulas, we have

Ea(e) = 28 6 (ug — ¢1)0udo — 208 Iy (uq, — p1)ug.do
00,

= 26/ L (ug — ¢1)uq, da—QB/ Oy (uq, — ¢1)uq, d0+26/ Oy (uq — p1)uqdo
= 25/ Aug — ¢1)ug dx + 26/ (V(ug — ¢1), Vug, )dx
0 Q

— 28 A(ugq, — ¢1)uq. dr — 23 (V(uq, — ¢1), Vug, )dx + 25/8 Oy (uq — p1)uqdo.
Qe Qe Q

By using the fact that ug and uq, are respectively the solution of the problems (15) (with g = 0)
and (16), we get

Ea(e) = —2/8/(f+A§01)UQEd.’E+25/<V(’U,Q — 1), Vug, )dx
Q Q
+ 2B/ (f + Apr)ug dx — Qﬁ/ (V(uq, — 1), Vug, )dx.
Qe Qe
So, we can write

EQ(G) = E]_(E)“FZQ(E),

where

Si(e) = 28 /Q (f + Apr)ug,de + 28 /Q (V(ua — ¢1), Vug,)da

and

Yo(e) = 25/Q (f + Apr)ug dx — 26/Q (V(uq, — 1), Vug, )dz.

Now, applying (18) and Proposition 2, we have

KNG = 7+ apnds+25 [ (9un = o1), Vo
and
%22(6) . = 25/9(]“ + Apr )u'dx — QB/Q(VU’,VUQ>dx+ 2B/Q<V(UQ — 1), Vu')dx
= QB/F(erAw)UQP@(V)dU - 25/F<V(UQ — 1), Vug) Pe(v)do
R /F (V(uq — 1), Vug) Po(v)do.
Hence,
20| = 28 [ (V0 Vua)ds 25 [ (Ve — 1) Vo) Po(v)d
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since ug = g = 0 on I' = 9. Furthermore, we have / (Vu', Vug)dr = 0. Indeed, note first
Q
that

d
/ (V! Vug)dr = <VUQE, Vugq)dx
Q dE

e=0t

Next, since ug and uq, are respectively the solution of the problems (15) and (16), it follows
from Green’s formula that

/<VUQ€,VUQ /AUQ uqdr + Oyuq, ugdr = / — fuqdz,
Q Q

o0

which implies that the term / (Vugq,, Vug)dr does not depend on e. So, its derivative with

respect to € at 0 is null. Thus, we have obtained

%Ju(e) = %52(6) = /F (V (10 — o1), Vo) Po(v)do,
or, in another form,
Joa(€) = ada(€) + BJa(€) =€ (—2B/F<V(ug — 1), VUQ>P@(U)dG> + o(e). (25)

Consequently, it follows from equation (21) and (25) and the fact that J;(0) =0, i = 1,2,3,4,
that

AT = a(i(e) + Ja(e)) + BJs(e) + Jale / H(2) Po(v(2))do (x) + o(e),

where
H= Oéj()(.,UQ) + le('a VUQ) - 2B<V(UQ - 901)7 VUQ>
Thus,

/7—[ )Po(v(x))do(x). (26)

We are now in position to state the main result of this paper.
Theorem 3. Suppose that the assumptions (H) are satisfied. Let Q € U, © € O and Q. =

0 +€O, fore € [0,1]. Assume further that 0 € © and that © is strongly convez. Then, the shape
derivative at S in the direction © of the constrained functional J expressed by (14), is given by

- /F H () Po(v(x))do (), (27)
where

H = ajo(.,uq) + B1(., Vug) — 28(V(uq — ¢1), Vug).

5 Description of the numerical setting and outline
of the algorithm

The proposed numerical optimization algorithm for solving the problem (3) is based on a gradient
method.
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5.1 Numerical algorithm

Based on the shape derivative formula (26) of the cost functional gradient of 7, the computation
of the optimal shape is done using the gradient numerical method summarized in the following
algorithm where we take « =1—t and f =t, t € [0, 1].

(1) Initialization.
o Choose an initial domain Qg € U;
o Fix step size p €]0,1[ and a precision Eps.
(2) Main part, for iteration k=0,...
(7) Calculate the respective solution uy = ug, of the state problem (15) on 2.
(77) Calculate the respective solution vy, = g, the adjoint state problem (22) €.

(ii7) o Extract ug, g, Vug and Vb, on I'y, = 0Q.
o Compute Hy on I'y by the relation

Hie = (1 =)o, uk) + i1 (., Vug) — 2¢(V (ug, — 1), Vug).
(tv) Compute Py = Pq, .
(v) Compute P, the solution of

arg mln Ar(o /Hk (28)

where
P ={® e C(R") / ® is convex and homogeneous of degree 1 and Pg(,) < ® < Pp}.

where B(0,7) is the open ball of center 0 and radius r in R”™.

(vi) o Compute
Q1= QU+ pOy.

where the domain ©y, is given by
O 1= 8P, (0) = {z eR" / P, (x) > (I,z), Vz € R”}
(3) End criteria.
o if |Ax(Py)| < Eps, Return Q.
o else, Back to previous step (2).

Remark 1. e Note that, the shape derivative of a fairly general class of shape functionals
J(Q) in direction of a vector field ¥ has the generic form:

J ()W) = /aQ 9{0(x),v(x))do(x) =: (gr, (I(x), v(2))) L2 (90)- (29)

where the scalar function g : 9Q — R is the shape gradient of J with respect to the L?(0)
inner product. This statement is referred to as the Hadamard structure theorem for shape
derivatives (Sokolowski & Zolesio, 1992). In the particular case of convexity constraint in
the family of admissible domains, according to Theorem 1, this structure theorem becomes

6J(Q)[O] := - foa(z)Po(v(z))do(x) = (faa, Po(v))2(o0)- (30)

Here, §J(2)[O] depends only on the normal component of Po on the boundary OS).
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e The expression (30) allows us to easily deduce the direction of descent, as it was summarized
in the above algorithm, because the sequence of domains (Q)ken s constructed in such a
way that (J () )ken is decreasing. Indeed, let k € N*, then, for a small p €]0, 1], we have

T Q1) =T (%) = T+ pOr) — T ()

= p < HiPo, © vk da) + o(p).
oy,

Now, if we denote by Ag(p) = Hy, povy do, since ﬁk = Peg, 15 a solution of arg mi? Ak (p),
oy, pe
then

Ax(Py) = : HyPo, o vpdo < Ax(0) =0,
Qp,

which guarantees the decrease of the objective function J. Consequently, ﬁk defines a
descent direction for J.
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