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1 Introduction

Shape optimization is a part of the field of optimal control theory. The main objective in shape
optimization problems is to deform the outer boundary of an object in order to minimize or
maximize a cost function, while satisfying given constraints. Historically, the shape optimiza-
tion methods have been used in cutting edge technologies mainly in advanced areas such as
aerodynamics. They have recently been extended to other engineering areas where the shape
greatly influences the performances, for example, in hydrodynamics, elasticity, geophysics or
mechanical models (Allaire, 2003; Boulkhemair et al., 2013; Henrot & Pierre, 2006; Pironneau,
1984). Indeed, the shape optimization is now commonly used for solving problems that are re-
lated to a variety of phenomena in different scientist sectors, in order to improve the productivity,
reduce the cost and maximize the profit.

In many cases, the shape optimization problem is reduced to find an optimal shape by
minimizing a certain cost functional, subject to given constraints, which often depends on the
solution of a given partial differential equation defined on the variable domain. Generally, we
try to solve and analyze problems of the following kind: find a solution Ω∗ of

Ω∗ ∈ O, J (Ω∗) = inf
Ω∈O

J (Ω),

where O is a class of subsets in Rn and J is a functional defined on O with values in R. The
elements of O are called admissible shapes or domains and J is called a shape or cost functional.

At the beginning of any optimization process, there is a modeling question. One has to choose
a mathematical model to represent the data to be optimized. There are two main ingredients in a
mathematical model for shape optimization : at first the way to represent a shape, and secondly
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the way to perform a sensitivity analysis. In this work we are interested in a new method in
sensitivity analysis. Indeed, the numerical investigation of shape optimization problems is based
on the study of the first variation of the cost functional, and in particular on the computation
of its gradient or what one call in the literature the shape derivative. This notion was first
introduced by Hadamard in his famous memory (Hadamard, 1907). We recall the two usual
frameworks for computing shape derivatives with the Hadamard method of variation of domains
using vector fields : the displacement field method and the speed method. A shape is considered
as a bounded open set of Rn, so if θ ∈ W 1,∞(Rn,Rn) a variation of the reference shape Ω is
defined by

Ωθ = (IdRn + θ)(Ω) = {x+ θ(x) | x ∈ Ω}.

Then differentiating with respect to θ defines the shape derivative with respect to the displace-
ment field method (Allaire, 2003; Céa, 1964; Murat & Simon, 1974, 1976). For the speed method
: if V ∈ C1(R× Rn;Rn) is a vector field, we can consider the solution to the following equation

ΦV (0, x) = x and
dΦV (t, x)

dt
= V (t,ΦV (t, x)), x ∈ Ω. (1)

This defines a time-dependent domain

Ωt = ΦV (t,Ω) = {ΦV (t, x) | x ∈ Ω}.

Then differentiating with respect to the time parameter leads to another notion of shape deriva-
tive (Henrot & Pierre, 2006; Delfour & Zolésio, 2011; Sokolowski & Zolesio, 1992).

But these techniques themselves present some difficulties from both theoretical and numer-
ical point of view. For example, when one wants to connect the set of admissible domains
with vector fields, one has to suppose high smoothness conditions on the initial data in order
to differentiate functions depending on the domain. The main objective in this paper is to
develop a new method for the shape differentiability (Niftiyev & Gasimov, 2004; Boulkhemair,
2003; Boulkhemair & Chakib, 2014, 2015; Boulkhemair et al., 2020) for a shape optimization
problem of a volume cost functional subject to a boundary value problem. Then we establish
the expression for its shape derivative via support functions, using the formula of shape deriva-
tive with respect to star-shaped domains proposed in (Boulkhemair et al., 2020). This formula
was in fact introduced the first time by A. A. Niftiyev and Y. Gasimov (Niftiyev & Gasimov,
2004) for convex domains and studied and developed by A. Boulkhemair, A. Chakib and A.
Sadik (Boulkhemair, 2003; Boulkhemair & Chakib, 2014, 2015; Boulkhemair et al., 2020). In
order to be more precise, let Ω0 be a bounded star-shaped domains of class C2, Ω be a bounded
convex domain of class C2 and a family of functions (fϵ)ϵ ⊂ L1

loc(Rn) with f0 in the Sobolev

space W 1,1
loc (R

n) and let f be a function such that

fϵ − f0
ϵ

→ f in L1
loc(Rn) as ϵ→ 0+.

Then,

lim
ϵ→0+

1

ϵ

(∫
Ω0+ϵΩ

fϵ dx−
∫
Ω0

f0 dx

)
exists and is equal to ∫

Ω0

f(x)dx+

∫
∂Ω0

f0(x)PΩ(ν0(x)) dσ(x), (2)

where ν0(x) denotes the outward unit normal vector to ∂Ω0 at x, and PΩ is the support function
of the convex domain Ω.

As said above, our interest in a such formula came first from a numerical study undertaken
in (Boulkhemair et al., 2021, 2020). In fact, we believe that the use of support functions is
more advantageous than that using vectors fields. We refer, for example, to (Allaire, 2003), for
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explanations about the difficulties that arise when implementing numerically the minimization
of domain integral functionals, via gradient method type’s, using the usual expression of the
shape derivative by vector fields. In fact, when using vector fields, we have to extend the vector
field (obtained only on the boundary) to all the domain or to re-mesh at each iteration of the
process, and both approaches are expensive. While for this proposed approach involving support
functions, we get not only a set of boundary points but also a support function, at each iteration.
Then by taking its subdifferential at the origin, we get the next domain.

The outline of the paper is as follows. In the second section, we present the considered
shape optimization problem. In the third section, we give some preliminary results on the shape
derivative formulas using Minkowski deformation for a volume cost functional. In the fourth
section, we give the main result of this work which is the computation of the shape derivative of
the cost functional on the considered family of admissible domains and establish the expression
for its shape derivative by means of support functions. In the last section, we describe in more
details the main ingredients of the proposed process of optimization and we propose an algorithm
for the approximation of the problem, based on a gradient method.

2 Statement of the shape optimization problem

We are concerned with the following typical shape optimization problem :

min
Ω∈U

J(Ω, uΩ) (3)

where

J(Ω, uΩ) :=

∫
Ω
j(x, uΩ,∇uΩ)dx (4)

and uΩ satisfies

AuΩ = f in Ω, (5)

AbuΩ = g on Γ = ∂Ω, (6)

where f and g are given functions, A and Ab are given operators, U denotes the set of admissible
domains and j is a function that do not depend on the shape Ω.

In the sequel, we will propose a numerical method for the approximation of this problem
based on a gradient method. This requires to study the first variation or differentiability of
the cost functional with respect to an appropriate family of domains U . For this, we will use
the shape derivative formula proposed in (Boulkhemair et al., 2020). So let us define the set
of admissible domains. Let D be a fixed smooth and bounded open subset of Rn. The set
of admissible domains U is the set of bounded open subset of Rn which are of class C2 and
star-shaped with respect to some ball of radius r > 0.

In this work, we will only consider the following types of functionals. The first one is:

Ω ∈ U 7−→
∫
Ω
|uΩ − φ0|2dx, (7)

while the second one involves the gradient operator:

Ω ∈ U 7−→
∫
Ω
∥∇uΩ −∇φ1∥2dx. (8)

In fact, it is equivalent to study the functional

J (Ω, uΩ) =

∫
Ω
j(uΩ,∇uΩ)dx, (9)

with j(uΩ,∇uΩ) = α|uΩ − φ0|2 + β∥∇uΩ −∇φ1∥2, (10)
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where α and β are fixed real numbers. Here, ∥ · ∥ denotes the euclidian norm in Rn and uΩ is
the solution of the state equation associated to the operators A = −∆ and Ab = 1. The given
functions f , g, φ0 and φ1 satisfy appropriate regularity assumptions allowing the existence of
the shape derivative of J with respect to Ω.

3 Shape sensitivity analysis using Minkowski deformation

In order to compute the shape derivative of the cost functional for the shape optimization prob-
lem (3), we recall first the result on the shape derivative formulas given in (Boulkhemair, 2003;
Boulkhemair & Chakib, 2014; Boulkhemair et al., 2020) for the class of star-shaped domains U .

3.1 Preliminary results

Consider a real-valued shape function

J : Ω ∈ U 7−→ J(Ω) ∈ R

defined on a family U of subsets of Rn.
Let O be the set of convex domains of class C2 and K denote the set of all convex domains.
Since we are interested in the derivative with respect to the shape, let us first define the

technique adopted for the deformation of domains based on Minkowski sum and then define the
associated shape derivative.

Definition 1. Let Ω ∈ U and Θ ∈ O. The deformed domain denoted by Ωϵ is given by the sum
of Minkowski as follows :

Ωϵ = Ω+ ϵΘ := {x+ ϵy | x ∈ Ω, y ∈ Θ}, ϵ ∈ [0, 1].

A shape functional J is called shape differentiable at Ω in the direction of Θ, if the eulerian
derivative

δJ(Ω)[Θ] := lim
ϵ→0+

J(Ωϵ)− J(Ω)

ϵ
, Ωϵ = Ω+ ϵΘ

exists for all Θ ∈ O. Then the expression δJ(Ω)[Θ] is called the shape derivative of J at Ω in
the direction of Θ.

To our knowledge, this kind of deformation was first used in the field of shape optimization
by A. A. Niftiyev and Y. Gasimov (Niftiyev & Gasimov, 2004). More precisely, they proposed
the deformation

(1− ϵ)Ω + ϵΘ, for Ω,Θ ∈ O and ϵ ∈ [0, 1],

to express the shape derivative of a volume cost functional, under appropriate regularity as-
sumptions, by means of support functions of convex domains. Then, inspired by the Brunn-
Minkowski theory (see, for example, R. Schneider,(Schneider, 2014)), A. Boulkhemair and A.
Chakib (Boulkhemair, 2003; Boulkhemair & Chakib, 2014) proposed to compute the shape
derivative by considering the Minkowski deformation

Ω + ϵΘ, for Ω ∈ U , Θ ∈ O and ϵ ∈ [0, 1].

In the sequel, we will opt for the last technique of deformation.
In this context, let us recall the shape derivative formula for a volume integral shape func-

tional J of type

Ω ∈ U 7→ J(Ω) =

∫
Ω
g(x)dx,

where g is in the Sobolev space W 1,1(D).
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Recall first that the support function PΘ of a bounded convex domain Θ is given by a
continuous, convex and positively homogeneous function:

PΘ(x) = sup
y∈Θ

⟨x, y⟩ = sup
y∈Θ

⟨x.y⟩, x ∈ Rn,

where ⟨., .⟩ denotes the standard scalar product of x and y in Rn. Conversely, for any continuous,
convex, positively homogeneous function P (x) there exists a unique convex bounded set Ω, such
that P (x) is its support function, i.e. P (x) = PΩ(x), where Ω is obtained as a sub-differential
of the function P at the origin :

Ω = ∂P (0) := {ξ ∈ Rn | ⟨ξ, y⟩ ≤ P (y), ∀y ∈ Rn}.

Now, according to (Boulkhemair et al., 2020), we have

Theorem 1. Consider the set U of domains which are star-shaped with respect to some ball and
are contained in D. Let Ω ∈ U and Θ ∈ O. Then, the shape derivative of J at Ω ∈ U in the
direction Θ exists and is given by

lim
ϵ→0+

J(Ωϵ)− J(Ω)

ϵ
=

∫
∂Ω
g(x)PΘ(ν(x))dσ(x),

where Ωϵ = Ω+ ϵΘ and ν denotes the exterior unit normal vector to Ω.

In the situation where the function g depends on domains, one can show the following more
general result.

Proposition 1. Let (gϵ)ϵ∈]0,1[ ⊂ L1(D) be a family of functions and let g0 ∈W 1,1(D) and g be
a function such that

g = lim
ϵ→0+

1

ϵ
(gϵ − g0) in L

1(D).

Consider the function

ϵ ∈]0, 1[7→ I(ϵ) =

∫
Ωϵ

gϵ(x)dx ∈ R.

Then we have

lim
ϵ→0+

I(ϵ)− I(0)

ϵ
=

∫
Ω
g(x)dx+

∫
Γ
g0(x)PΘ(ν(x))dσ(x). (11)

where ν denotes the outward unit normal vector to Γ = ∂Ω.

Proof. We can write

I(ϵ)− I(0)

ϵ
=

1

ϵ

(∫
Ωϵ

gϵ(x)dx−
∫
Ωϵ

g0(x)dx

)
+

1

ϵ

(∫
Ωϵ

g0(x)dx−
∫
Ω0

g0(x)dx

)

=

∫
D
χΩϵ

(
1

ϵ
(gϵ − g0)(x)− f(x)

)
dx+

∫
D
χΩϵ(x)g(x)dx+

1

ϵ

(∫
Ωϵ

g0(x)dx−
∫
Ω0

g0(x)dx

)
.

First, we have∣∣∣∣∫
D
χΩϵ

(
1

ϵ
(gϵ − g0)(x)− g(x)

)
dx

∣∣∣∣ ≤ ∫
D

∣∣∣∣1ϵ (gϵ − g0)(x)− g(x)

∣∣∣∣ dx −−−→
ϵ→0+

0.

On the other hand, since we have that χΩϵ = χΩ+ϵΘ and that the characteristic functions
χΩϵ converge almost everywhere to the characteristic function χΩ, then from the Lebesgue
convergence theorem in L1(D) and by the use of Theorem 1, it follows that

lim
ϵ→0+

I(ϵ)− I(0)

ϵ
=

∫
D
χΩg(x)dx+

∫
Γ
g0(x)PΘ(ν(x))dσ(x).
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Consequently, we get

lim
ϵ→0+

I(ϵ)− I(0)

ϵ
=

∫
Ω
g(x)dx+

∫
Γ
g0(x)PΘ(ν(x))dσ(x)

The following result concerns the situation where g is written as a product of two functions
depending on the domains.

Proposition 2. Let (fϵ)ϵ∈]0,1[ and (kϵ)ϵ∈]0,1[ be two families of functions in L2(D) and let
f0 ∈ H1(D), k0 ∈ H1(D) and f, k be functions such that

f = lim
ϵ→0+

1

ϵ
(fϵ − f0) in L

2(D) and k = lim
ϵ→0+

1

ϵ
(kϵ − k0) in L

2(D).

Consider the function

ϵ ∈]0, 1[7→ F (ϵ) =

∫
Ωϵ

fϵ(x)kϵ(x)dx ∈ R.

Then, we have

lim
ϵ→0+

F (ϵ)− F (0)

ϵ
=

∫
Ω
(kf0 + fk0)(x)dx+

∫
Γ
(f0k0)(x)PΘ(ν(x))dσ(x), (12)

where ν denotes the exterior unit normal vector to Ω.

Proof. We can write

1

ϵ
(fϵkϵ − f0k0)− f0k − fk0 = f (kϵ − k0) + kϵ

(
1

ϵ
(fϵ − f0)− f

)
+ f0

(
1

ϵ
(kϵ − k0)− k

)
.

Using Cauchy-Schwarz inequality, we get∥∥∥∥1ϵ (fϵkϵ − f0k0)− f0k − fk0

∥∥∥∥
L1(D)

≤∥f∥L2(D) ∥kϵ − k0∥L2(D) + ∥kϵ∥L2(D)

∥∥∥∥fϵ − f0
ϵ

− f

∥∥∥∥
L2(D)

+ ∥f0∥L2(D)

∥∥∥∥kϵ − k0
ϵ

− k

∥∥∥∥
L2(D)

.

It follows from the assumptions that ∥kϵ − k0∥L2(D) converge to 0 as ϵ → 0. Therefore, there
exists M > 0 such that ∥kϵ∥L2(D) ≤M for small enough ϵ. Consequently,

lim
ϵ→0+

∥∥∥∥1ϵ (fϵkϵ − f0k0)− f0k − fk0

∥∥∥∥
L1(D)

= 0.

So, applying Proposition 1 to the functional

ϵ ∈]0, 1[7→ F (ϵ) =

∫
Ωϵ

fϵ(x)kϵ(x)dx ∈ R,

yields

lim
ϵ→0+

F (ϵ)− F (0)

ϵ
=

∫
Ω
(f0k + fk0)(x)dx+

∫
Γ
f0(x)k0(x)PΘ(ν(x))dσ(x). (13)
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4 Shape derivative under a state constraint problem

In this section, we prove and state the main result of this paper. Recall that we are interested
in computing the shape derivative of the shape cost functional

J (Ω, uΩ) = α

∫
Ω
|uΩ − φ0|2dx+ β

∫
Ω
∥∇uΩ −∇φ1∥2dx, Ω ∈ U , (14)

where α and β are fixed real numbers and the family U of admissible domains is the set of
domains which are star-shaped with respect to some ball and are contained in D and uΩ is the
solution of the following state problem on Ω{

−∆uΩ = f in Ω,

uΩ = g on Γ = ∂Ω.
(15)

In the sequel, for simplicity, we assume that g = 0 and the given functions f, φ0 and φ1

satisfy the following regularity assumptions

(H) f ∈ H1(D), φ0 ∈ H1
loc(Rn) and φ1 ∈ H2

loc(Rn).

Note that these regularity assumptions ensure the well posedness of the state problem and
allow at the same time the existence of the shape derivative.

Now, let Ω ∈ U , ϵ ∈ [0, 1] and let Θ ∈ O, that is, Ω is a convex domain of class C2 contained
in D. We denote by Ωϵ = Ω + ϵΘ the Minkowski deformation domain of Ω by Θ. Let uΩϵ be
the solution of the state problem on Ωϵ{

−∆uΩϵ = f in Ωϵ,

uΩϵ = 0 on Γϵ = ∂Ωϵ.
(16)

According to (Boulkhemair et al., 2020), recall that, if Θ is a strongly convex domain, Ωϵ

can be considered as a deformation of the domain Ω by the vector field V (x) = a(x) such that

⟨a(x), νΓ(x)⟩ = PΘ(νΓ(x)),

where νΓ denotes the exterior unit normal vector to Ω. In the sequel, we will need the following
result (see for example, (Henrot & Pierre, 2006; Delfour & Zolésio, 2011; Sokolowski & Zolesio,
1992))

Theorem 2. Assume that the assumptions (H) hold and that Θ is a strongly convex domain.
Let u = uΩ be the unique solution of (15) on Ω. Then, for ϵ ∈ [0, 1], the unique solution uϵ = uΩϵ

of (15) on Ωϵ satisfies

ũϵ = ũ+ ϵ u′ + ϵ Uϵ where Uϵ → 0 in H1(D)

where ũε and ũ designate respectively extensions on D of uε and u. Moreover, the functions
j′0 = 2u′(ũ− φ0) and j

′
1 = 2⟨∇u′,∇ũ−∇φ1⟩ satisfy

1

ϵ
[|ũϵ − φ0|2 − |ũ− φ0|2]− j′0 −→ 0 in L1(D), ϵ→ 0

and
1

ϵ
[∥∇ũϵ −∇φ1∥2 − ∥∇ũ−∇φ1∥2]− j′1 −→ 0 in L1(D), ϵ→ 0.

In particular, we get the existence of the shape derivative of J .
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4.1 Shape derivative of the cost functional

Let ϵ ∈ [0, 1] and let uΩ and uΩϵ be respectively the solution of (15) and (16). Consider their
extensions ũΩ and ũΩϵ on D that we denote, for simplicity, again by uΩ and uΩϵ .

Let’s denote by j0 and j1 the following functions:

j0 : D × R −→ R
(x, y) 7−→ j0(x, y) = |y − φ0(x)|2

j1 : D × Rn −→ R
(x, y) 7−→ j1(x, y) = ∥y −∇φ1(x)∥2,

so that

J (Ω, uΩ) = α

∫
Ω
j0(x, uΩ(x))dx+ β

∫
Ω
j1(x,∇uΩ(x))dx.

Now, let us define △J (Ω, uΩ) = J (Ωϵ, uΩϵ)− J (Ω, uΩ). We have

△J (Ω, uΩ) = α

∫
Ωϵ

j0(., uΩϵ)dx+ β

∫
Ωϵ

j1(.,∇uΩϵ)dx− α

∫
Ω
j0(., uΩ)dx− β

∫
Ω
j1(.,∇uΩ)dx.

Define then the functions J1, J2, J3 and J4 by

J1(ϵ) =

∫
Ωϵ

j0(., uΩϵ)dx−
∫
Ω
j0(., uΩϵ)dx, J2(ϵ) =

∫
Ω
(j0(., uΩϵ)− j0(., uΩ))dx

J3(ϵ) =

∫
Ωϵ

j1(.,∇uΩϵ)dx−
∫
Ω
j1(.,∇uΩϵ)dx, J4(ϵ) =

∫
Ω
(j1(.,∇uΩϵ)− j1(.,∇uΩ))dx,

so that
△J (Ω, uΩ) = α(J1(ϵ) + J2(ϵ)) + β(J3(ϵ) + J4(ϵ)).

Let us first compute the shape derivative of the functions J1 and J3. Setting δu = uΩϵ − uΩ, we
have

j0(., uΩϵ)− j0(., uΩ) = |uΩϵ − φ0|2 − |uΩ − φ0|2

= |δu|2 + 2(uΩ − φ0)δu. (17)

We note that since f ∈ H1(D) and the domains D, Ω and Θ are smooth enough, we have
uΩ ∈ H2(Ω) and uΩε ∈ H2(Ωε). On the other hand, according to Theorem 2, there exists
u′ ∈ H1(D) such that ∥∥∥∥uΩϵ − uΩ

ϵ
− u′

∥∥∥∥
H1(D)

−−−→
ϵ→0+

0. (18)

Now, we have∥∥∥∥j0(., uΩϵ)− j0(., uΩ)

ϵ
− 2(uΩ − φ0)u

′
∥∥∥∥
L1(D)

≤ 1

ϵ
∥δu∥2L2(D) + 2

∫
D

∣∣∣∣(uΩ − φ0)

(
δu

ϵ
− u′

)∣∣∣∣ dx
≤ 1

ϵ
∥δu∥2L2(D) + 2∥uΩ − φ0∥2L2(D)

∥∥∥∥δuϵ − u′
∥∥∥∥2
L2(D)

and, by using (18), we have

lim
ϵ→0+

1

ϵ
∥δu∥2L2(D) = 0 and lim

ϵ→0+
2∥uΩ − φ0∥2L2(D)

∥∥∥∥δuϵ − u′
∥∥∥∥2
L2(D)

= 0.

Thus,

lim
ϵ→0+

∥∥∥∥j0(., uΩϵ)− j0(., uΩ)

ϵ
− 2(uΩ − φ0)u

′
∥∥∥∥
L1(D)

= 0,
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that is, the function ϵ 7→ j0(., uΩϵ) ∈ L1(D) is differentiable at 0+.

Setting j′0 = 2(uΩ − φ0)u
′ and applying Proposition 1 to the function J1(ϵ), we obtain

d

dϵ
(J1(ϵ))

∣∣∣∣
ϵ=0+

=

∫
Ω

d

dϵ
j0(., uΩϵ)

∣∣∣∣
ϵ=0+

dx+

∫
Γ
j0(., uΩ)PΘ(ν)dσ −

∫
Ω

d

dϵ
j0(., uΩϵ)

∣∣∣∣
ϵ=0+

dx

=

∫
Ω
j′0dx+

∫
Γ
j0(., uΩ)PΘ(ν)dσ −

∫
Ω
j′0dx

=

∫
Γ
j0(., uΩ)PΘ(ν)dσ. (19)

On the other hand, by a similar argument, we have

j1(.,∇uΩϵ)− j1(.,∇uΩ) = ∥∇uΩϵ −∇φ1∥2 − ∥∇uΩ −∇φ1∥2

= ∥∇δu∥2 + 2⟨∇uΩ −∇φ1,∇δu⟩ (20)

Setting ΨΩ = ∇(uΩ − φ1) and Mϵ =

∥∥∥∥j1(.,∇uΩϵ)− j1(.,∇uΩ)
ϵ

− 2⟨∇(uΩ − φ1),∇u′⟩
∥∥∥∥
L1(D)

, we

have

Mϵ ≤ 1

ϵ
∥∇δu∥2L2(D) + 2

∫
D

∣∣∣∣⟨ΨΩ,∇
(
δu

ϵ
− u′

)⟩∣∣∣∣ dx
≤ 1

ϵ
∥∇δu∥2L2(D) + 2∥ΨΩ∥2L2(D)

∥∥∥∥∇(
δu

ϵ
− u′

)∥∥∥∥2
L2(D)

.

and, by using once more (18), we have

lim
ϵ→0+

1

ϵ
∥∇δu∥2L2(D) = 0 and lim

ϵ→0+
2∥ΨΩ∥2L2(D)

∥∥∥∥∇δuϵ −∇u′
∥∥∥∥2
L2(D)

= 0.

Hence, we get

lim
ϵ→0+

Mϵ = 0,

that is, the function ϵ 7→ j1(.,∇uΩϵ) ∈ L1(D) is differentiable at 0+.

Setting j′1 = 2⟨∇(uΩ−φ1),∇u′⟩ and applying Proposition 1 to the function J3(ϵ), we obtain

d

dϵ
(J3(ϵ))

∣∣∣∣
ϵ=0+

=

∫
Ω

d

dϵ
j1(.,∇uΩϵ)

∣∣∣∣
ϵ=0+

dx+

∫
Γ
j0(., uΩ)PΘ(ν)dσ −

∫
Ω

d

dϵ
j1(.,∇uΩϵ)

∣∣∣∣
ϵ=0+

dx

=

∫
Ω
j′1dx+

∫
Γ
j1(.,∇uΩ)PΘ(ν)dσ −

∫
Ω
j′1dx

=

∫
Γ
j1(.,∇uΩ)PΘ(ν)dσ.

Therefore, we have obtained

d

dϵ
(J1(ϵ))

∣∣∣∣
ϵ=0+

=

∫
Γ
j0(., uΩ)PΘ(ν)dσ,

d

dϵ
(J3(ϵ))

∣∣∣∣
ϵ=0+

=

∫
Γ
j1(.,∇uΩ)PΘ(ν)dσ,

and, of course,

αJ1(ϵ) + βJ3(ϵ) = ϵα

∫
Γ
j0(., uΩ)PΘ(ν)dσ + ϵβ

∫
Γ
j1(.,∇uΩ)PΘ(ν)dσ + o(ϵ). (21)

81



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.6, N.2, 2021

Thus, it remains to compute the shape derivative of J2 and J4. Using the formulas (20)
and (17), we can write

αJ2(ϵ) + βJ4(ϵ) = J2,4(ϵ) + Err(ϵ).

where

J2,4(ϵ) = α

∫
Ω
2(uΩ − φ0)δudx+ β

∫
Ω
2⟨∇uΩ −∇φ1,∇δu⟩dx

and

Err(ϵ) = α

∫
Ω
|δu|2dx+ β

∫
Ω
∥∇δu∥2dx.

First, by using the convergence in (18), we have

Err(ϵ) = αo1(ϵ) + βo2(ϵ) = o(ϵ).

On the other hand, using Green’s formulas, we have∫
Ω
⟨∇uΩ −∇φ1,∇δu⟩dx =

∫
Ω
−∆(uΩ − φ1)δudx+

∫
∂Ω
∂ν(uΩ − φ1)δudσ.

Hence,

J2,4(ϵ) = α

∫
Ω
2(uΩ − φ0)δudx+ 2β

∫
Ω
−∆(uΩ − φ1)δudx+ 2β

∫
∂Ω

2∂ν(uΩ − φ1)δudσ

=

∫
Ω
(2α(uΩ − φ0)− 2β∆(uΩ − φ1))δudx+ 2β

∫
∂Ω
∂ν(uΩ − φ1)δudσ.

Now, let us introduce the unique solution ψ0 of the following problem, called adjoint state
problem, {

−∆ψ0 = 2α(uΩ − φ0)− 2β∆(uΩ − φ1) in Ω,

ψ0 = 0 on Γ = ∂Ω.
(22)

Thus, by using Green’s formulas, we can write

J2,4(ϵ) =

∫
Ω
−∆ψ0δudx+ 2β

∫
∂Ω
∂ν(uΩ − φ1)δudσ

=

∫
Ω
⟨∇ψ0,∇δu⟩dx−

∫
∂Ω
∂νψ0δudσ + 2β

∫
∂Ω
∂ν(uΩ − φ1)δudσ

=

∫
Ω
−∆δuψ0dx+

∫
∂Ω
∂νδuψ0dσ −

∫
∂Ω
∂νψ0δudσ + 2β

∫
∂Ω
∂ν(uΩ − φ1)δudσ.

Using the fact that for all ϵ ∈ [0, 1[, Ω ⊆ Ωϵ and uΩϵ and uΩ are respectively solutions of
problems (16) and (15), we get that

−∆δu = 0 in Ω. (23)

On the other hand, we know that ψ0 ∈ H1
0 (Ω). Hence,

J2,4(ϵ) = −
∫
∂Ω
∂νψ0δudσ + 2β

∫
∂Ω
∂ν(uΩ − φ1)δudσ.

Let us set

Ξ1(ϵ) = −
∫
∂Ω
∂νψ0δudσ and Ξ2(ϵ) = 2β

∫
∂Ω
∂ν(uΩ − φ1)δudσ.
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In order to deal with the computation of the shape derivatives of the functions Ξ1 and Ξ2, let
us introduce the solution ψϵ of the following problem:{

−∆ψϵ = 2α(uΩ − φ0)− 2β∆(uΩ − φ1) in Ωϵ,

∂νψϵ = 0 on Γϵ = ∂Ωϵ.
(24)

Thus, we have ∫
∂Ωϵ

∂νψϵδudσ = 0.

Hence, Ξ1(ϵ) can be written

Ξ1(ϵ) = −
∫
∂Ω
∂νψ0δudσ +

∫
∂Ωϵ

∂νψϵδudσ.

On the other hand, we know that uϵ is the solution of (16), so we have∫
∂Ωϵ

∂ν(uΩϵ − φ1)uΩϵdσ = 0.

Thus, Ξ2 can be written

Ξ2(ϵ) = 2β

∫
∂Ω
∂ν(uΩ − φ1)δudσ − 2β

∫
∂Ωϵ

∂ν(uΩϵ − φ1)uΩϵdσ.

Let us calculate the derivative of Ξ1. By using Green’s formulas, we have

Ξ1(ϵ) = −
∫
∂Ω
∂νψ0δudσ +

∫
∂Ωϵ

∂νψϵδudσ

= −
∫
Ω
∆ψ0δudx−

∫
Ω
⟨∇ψ0,∇δu⟩dx+

∫
Ωϵ

∆ψϵδudx+

∫
Ωϵ

⟨∇ψϵ,∇δu⟩dx.

Using the fact that Ω ⊆ Ωϵ, ψ0 and ψΩϵ are respectively solutions of problems (22) and (24)
and the fact that −∆uΩ = f in Ω, we obtain

Ξ1(ϵ) =

∫
Ω
(2α(uΩ − φ0)− 2β∆(uΩ − φ1))δudx−

∫
Ω
⟨∇ψ0,∇δu⟩dx

−
∫
Ωϵ

(2α(uΩ − φ0)− 2β∆(uΩ − φ1))δudx+

∫
Ωϵ

⟨∇ψϵ,∇δu⟩dx

=

∫
Ω
(2α(uΩ − φ0) + 2β(f +∆φ1))δudx−

∫
Ω
⟨∇ψ0,∇δu⟩dx

−
∫
Ωϵ

(2α(uΩ − φ0) + 2β(f +∆φ1))δudx+

∫
Ωϵ

⟨∇ψϵ,∇δ.u⟩dx

Hence, we can write Ξ1(ϵ) = Υ1(ϵ) + Υ2(ϵ), where

Υ1(ϵ) =

∫
Ω
(2α(uΩ − φ0) + 2β(f +∆φ1))δudx−

∫
Ω
⟨∇ψ0,∇δu⟩dx

and Υ2(ϵ) = −
∫
Ωϵ

(2α(uΩ−φ0)+2β(f+∆φ1))δudx+

∫
Ωϵ

⟨∇ψϵ,∇δu⟩dx.

Applying Proposition 2, the shape derivative of the function Υ1 is given by

d

dϵ
Υ1(ϵ)

∣∣∣∣
ϵ=0+

=

∫
Ω
(2α(uΩ − φ0) + 2β(f +∆φ1))u

′dx−
∫
Ω
⟨∇ψ0,∇u′⟩dx.
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Next, using (18) and Proposition 2, we get the shape derivative of the function Υ2:

d

dϵ
Υ2(ϵ)

∣∣∣∣
ϵ=0+

= −
∫
Ω
(2α(uΩ − φ0) + 2β(f +∆φ1))u

′dx+

∫
Ω
⟨∇ψ0,∇u′⟩dx.

Hence, the shape derivative of Ξ1(ϵ) is given by
d

dϵ
Ξ1(ϵ)

∣∣∣∣
ϵ=0+

= 0.

Let us now calculate the derivative of Ξ2. By using Green’s formulas, we have

Ξ2(ϵ) = 2β

∫
∂Ω
∂ν(uΩ − φ1)δudσ − 2β

∫
∂Ωϵ

∂ν(uΩϵ − φ1)uΩϵdσ

= 2β

∫
∂Ω
∂ν(uΩ − φ1)uΩϵdσ − 2β

∫
∂Ωϵ

∂ν(uΩϵ − φ1)uΩϵdσ + 2β

∫
∂Ω
∂ν(uΩ − φ1)uΩdσ

= 2β

∫
Ω
∆(uΩ − φ1)uΩϵdx+ 2β

∫
Ω
⟨∇(uΩ − φ1),∇uΩϵ⟩dx

− 2β

∫
Ωϵ

∆(uΩϵ − φ1)uΩϵdx− 2β

∫
Ωϵ

⟨∇(uΩϵ − φ1),∇uΩϵ⟩dx+ 2β

∫
∂Ω
∂ν(uΩ − φ1)uΩdσ.

By using the fact that uΩ and uΩϵ are respectively the solution of the problems (15) (with g = 0)
and (16), we get

Ξ2(ϵ) = −2β

∫
Ω
(f +∆φ1)uΩϵdx+ 2β

∫
Ω
⟨∇(uΩ − φ1),∇uΩϵ⟩dx

+ 2β

∫
Ωϵ

(f +∆φ1)uΩϵdx− 2β

∫
Ωϵ

⟨∇(uΩϵ − φ1),∇uΩϵ⟩dx.

So, we can write

Ξ2(ϵ) = Σ1(ϵ) + Σ2(ϵ),

where

Σ1(ϵ) = −2β

∫
Ω
(f +∆φ1)uΩϵdx+ 2β

∫
Ω
⟨∇(uΩ − φ1),∇uΩϵ⟩dx

and

Σ2(ϵ) = 2β

∫
Ωϵ

(f +∆φ1)uΩϵdx− 2β

∫
Ωϵ

⟨∇(uΩϵ − φ1),∇uΩϵ⟩dx.

Now, applying (18) and Proposition 2, we have

d

dϵ
Σ1(ϵ)

∣∣∣∣
ϵ=0+

= −2β

∫
Ω
(f +∆φ1)u

′dx+ 2β

∫
Ω
⟨∇(uΩ − φ1),∇u′⟩dx

and

d

dϵ
Σ2(ϵ)

∣∣∣∣
ϵ=0+

= 2β

∫
Ω
(f +∆φ1)u

′dx− 2β

∫
Ω
⟨∇u′,∇uΩ⟩dx+ 2β

∫
Ω
⟨∇(uΩ − φ1),∇u′⟩dx

= 2β

∫
Γ
(f +∆φ1)uΩPΘ(ν)dσ − 2β

∫
Γ
⟨∇(uΩ − φ1),∇uΩ⟩PΘ(ν)dσ

= −2β

∫
Γ
⟨∇(uΩ − φ1),∇uΩ⟩PΘ(ν)dσ.

Hence,

d

dϵ
Ξ2(ϵ)

∣∣∣∣
ϵ=0+

= 2β

∫
Ω
⟨∇u′,∇uΩ⟩dx− 2β

∫
Γ
⟨∇(uΩ − φ1),∇uΩ⟩PΘ(ν)dσ,
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since uΩ = g = 0 on Γ = ∂Ω. Furthermore, we have

∫
Ω
⟨∇u′,∇uΩ⟩dx = 0. Indeed, note first

that ∫
Ω
⟨∇u′,∇uΩ⟩dx =

d

dϵ

∫
Ω
⟨∇uΩϵ ,∇uΩ⟩dx

∣∣∣∣
ϵ=0+

.

Next, since uΩ and uΩϵ are respectively the solution of the problems (15) and (16), it follows
from Green’s formula that∫

Ω
⟨∇uΩϵ ,∇uΩ⟩dx = −

∫
Ω
∆uΩϵuΩdx+

∫
∂Ω
∂νuΩϵuΩdx =

∫
Ω
−fuΩdx,

which implies that the term

∫
Ω
⟨∇uΩϵ ,∇uΩ⟩dx does not depend on ϵ. So, its derivative with

respect to ϵ at 0 is null. Thus, we have obtained

d

dϵ
J2,4(ϵ)

∣∣∣∣
ϵ=0+

=
d

dϵ
Ξ2(ϵ)

∣∣∣∣
ϵ=0+

= −2β

∫
Γ
⟨∇(uΩ − φ1),∇uΩ⟩PΘ(ν)dσ,

or, in another form,

J2,4(ϵ) = αJ2(ϵ) + βJ4(ϵ) = ϵ

(
−2β

∫
Γ
⟨∇(uΩ − φ1),∇uΩ⟩PΘ(ν)dσ

)
+ o(ϵ). (25)

Consequently, it follows from equation (21) and (25) and the fact that Ji(0) = 0, i = 1, 2, 3, 4,
that

△J = α(J1(ϵ) + J2(ϵ)) + β(J3(ϵ) + J4(ϵ)) = ϵ

∫
Γ
H(x)PΘ(ν(x))dσ(x) + o(ϵ),

where

H = αj0(., uΩ) + βj1(.,∇uΩ)− 2β⟨∇(uΩ − φ1),∇uΩ⟩.

Thus,

δJ (Ω)[Θ] =

∫
Γ
H(x)PΘ(ν(x))dσ(x). (26)

We are now in position to state the main result of this paper.

Theorem 3. Suppose that the assumptions (H) are satisfied. Let Ω ∈ U , Θ ∈ O and Ωϵ =
Ω+ ϵΘ, for ε ∈ [0, 1]. Assume further that 0 ∈ Θ and that Θ is strongly convex. Then, the shape
derivative at Ω in the direction Θ of the constrained functional J expressed by (14), is given by

δJ (Ω)[Θ] =

∫
Γ
H(x)PΘ(ν(x))dσ(x), (27)

where

H = αj0(., uΩ) + βj1(.,∇uΩ)− 2β⟨∇(uΩ − φ1),∇uΩ⟩.

5 Description of the numerical setting and outline
of the algorithm

The proposed numerical optimization algorithm for solving the problem (3) is based on a gradient
method.
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5.1 Numerical algorithm

Based on the shape derivative formula (26) of the cost functional gradient of J , the computation
of the optimal shape is done using the gradient numerical method summarized in the following
algorithm where we take α = 1− t and β = t, t ∈ [0, 1].

(1) Initialization.

◦ Choose an initial domain Ω0 ∈ U ;
◦ Fix step size ρ ∈]0, 1[ and a precision Eps.

(2) Main part, for iteration k=0,...

(i) Calculate the respective solution uk = uΩk
of the state problem (15) on Ωk.

(ii) Calculate the respective solution ψk = ψΩk
the adjoint state problem (22) Ωk.

(iii) ◦ Extract uk, ψk, ∇uk and ∇ψk on Γk = ∂Ωk.

◦ Compute Hk on Γk by the relation

Hk = (1− t)j0(., uk) + tj1(.,∇uk)− 2t⟨∇(uk − φ1),∇uk⟩.

(iv) Compute Pk = PΩk
.

(v) Compute P̂k the solution of

argmin
φ∈P

Λk(φ) :=

∫
Γk

Hk(x)φ(ν(x)) ds (28)

where

P = {Φ ∈ C(Rn) / Φ is convex and homogeneous of degree 1 and PB(0,r) ≤ Φ ≤ PD}.

where B(0, r) is the open ball of center 0 and radius r in Rn.

(vi) ◦ Compute
Ωk+1 = Ωk + ρΘk.

where the domain Θk is given by

Θk := ∂P̂k(0) =
{
l ∈ Rn / P̂k (x) ≥ ⟨l, x⟩, ∀x ∈ Rn

}
(3) End criteria.

◦ if ∥Λk(P̂k)∥ ≤ Eps, Return Ωk.

◦ else, Back to previous step (2).

Remark 1. • Note that, the shape derivative of a fairly general class of shape functionals
J(Ω) in direction of a vector field ϑ has the generic form:

J
′
(Ω)(ϑ) =

∫
∂Ω
g⟨ϑ(x), ν(x)⟩dσ(x) =: ⟨g|Γ, ⟨ϑ(x), ν(x)⟩⟩L2(∂Ω). (29)

where the scalar function g : ∂Ω → R is the shape gradient of J with respect to the L2(∂Ω)
inner product. This statement is referred to as the Hadamard structure theorem for shape
derivatives (Sokolowski & Zolesio, 1992). In the particular case of convexity constraint in
the family of admissible domains, according to Theorem 1, this structure theorem becomes

δJ(Ω)[Θ] :=

∫
∂Ω
f∂Ω(x)PΘ(ν(x))dσ(x) = ⟨f∂Ω, PΘ(ν)⟩L2(∂Ω). (30)

Here, δJ(Ω)[Θ] depends only on the normal component of PΘ on the boundary ∂Ω.
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• The expression (30) allows us to easily deduce the direction of descent, as it was summarized
in the above algorithm, because the sequence of domains (Ωk)k∈N is constructed in such a
way that (J (Ωk))k∈N is decreasing. Indeed, let k ∈ N∗, then, for a small ρ ∈]0, 1[, we have

J (Ωk+1)− J (Ωk) = J (Ωk + ρΘk)− J (Ωk)

= ρ

(∫
∂Ωk

HkPΘk
◦ νk dσ

)
+ o(ρ).

Now, if we denote by Λk(p) =

∫
∂Ωk

Hk p◦νk dσ, since P̂k = PΘk
is a solution of argmin

p∈E
Λk(p),

then

Λk(P̂k) =

∫
∂Ωk

HkPΘk
◦ νkdσ ≤ Λk(0) = 0 ,

which guarantees the decrease of the objective function J . Consequently, Ω̂k defines a
descent direction for J .
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élastiques encastrées. dans Oeuvres de J. Hadamard, CNRS Paris 1968.

Henrot, A., and Pierre, M. (2006). Variation et optimisation de formes : une analyse
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